Inverse modeling of global and regional CH4 emissions using SCIAMACHY satellite retrievals
نویسندگان
چکیده
[1] Methane retrievals from the Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY) instrument onboard ENVISAT provide important information on atmospheric CH4 sources, particularly in tropical regions which are poorly monitored by in situ surface observations. Recently, Frankenberg et al. (2008a, 2008b) reported a major revision of SCIAMACHY retrievals due to an update of spectroscopic parameters of water vapor and CH4. Here, we analyze the impact of this revision on global and regional CH4 emissions estimates in 2004, using the TM5-4DVAR inverse modeling system. Inversions based on the revised SCIAMACHY retrievals yield 20% lower tropical emissions compared to the previous retrievals. The new retrievals improve significantly the consistency between observed and assimilated column average mixing ratios and the agreement with independent validation data. Furthermore, the considerable latitudinal and seasonal bias correction of the previous SCIAMACHY retrievals, derived in the TM5-4DVAR system by simultaneously assimilating highaccuracy surface measurements, is reduced by a factor of 3. The inversions result in significant changes in the spatial patterns of emissions and their seasonality compared to the bottom-up inventories. Sensitivity tests were done to analyze the robustness of retrieved emissions, revealing some dependence on the applied a priori emission inventories and OH fields. Furthermore, we performed a detailed validation of simulated CH4 mixing ratios using NOAA ship and aircraft profile samples, as well as stratospheric balloon samples, showing overall good agreement. We use the new SCIAMACHY retrievals for a regional analysis of CH4 emissions from South America, Africa, and Asia, exploiting the zooming capability of the TM5 model. This allows a more detailed analysis of spatial emission patterns and better comparison with aircraft profiles and independent regional emission estimates available for South America. Large CH4 emissions are attributed to various wetland regions in tropical South America and Africa, seasonally varying and opposite in phase with CH4 emissions from biomass burning. India, China and South East Asia are characterized by pronounced emissions from rice paddies peaking in the third quarter of the year, in addition to further anthropogenic emissions throughout the year.
منابع مشابه
Tropical methane emissions: A revised view from SCIAMACHY onboard ENVISAT
[1] Methane retrievals from near-infrared spectra recorded by the SCIAMACHY instrument onboard ENVISAT hitherto suggested unexpectedly large tropical emissions. Even though recent studies confirm substantial tropical emissions, there were indications for an unresolved error in the satellite retrievals. Here we identify a retrieval error related to inaccuracies in water vapor spectroscopic param...
متن کاملSensitivity of the recent methane budget to LMDz sub-grid-scale physical parameterizations
With the densification of surface observing networks and the development of remote sensing of greenhouse gases from space, estimations of methane (CH4) sources and sinks by inverse modeling are gaining additional constraining data but facing new challenges. The chemical transport model (CTM) linking the flux space to methane mixing ratio space must be able to represent these different types of ...
متن کاملCH4 retrievals from space‐based solar backscatter measurements: Performance evaluation against simulated aerosol and cirrus loaded scenes
[1] Monitoring of atmospheric methane (CH4) concentrations from space‐based instruments such as the Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY) and the Greenhouse Gases Observing Satellite (GOSAT) relies on observations of sunlight backscattered to space by the Earth’s surface and atmosphere. Retrieval biases occur due to unaccounted scattering effects by a...
متن کاملFirst ground-based FTIR observations of methane in the inner tropics over several years
Total column concentrations of methane have been retrieved from ground-based solar absorption FTIR spectra in the near-infrared recorded in Paramaribo (Suriname). The methane FTIR observations are compared with TM5 model simulations and satellite observations from SCIAMACHY, and represent the first validation of SCIAMACHY retrievals in the inner tropics using ground-based remote sensing techniq...
متن کاملAnthropogenic emissions of NOx over China: Reconciling the difference of inverse modeling results using GOME2 and OMI measurements
Inverse modeling using satellite observations of nitrogen dioxide (NO2) columns has been extensively used to estimate nitrogen oxides (NOx) emissions in China. Recently, the Global Ozone Monitoring Experiment-2 (GOME-2) and Ozone Monitoring Instrument (OMI) provide independent global NO2 column measurements on a nearly daily basis at around 9:30 and 13:30 local time across the equator, respecti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009